We consider a network model, embedded on the Manhattan lattice, of a quantum localisation problem belonging to symmetry class C. This arises in the context of quasiparticle dynamics in disordered spin-singlet superconductors which are invariant under spin rotations but not under time reversal. A mapping exists between problems belonging to this symmetry class and certain classical random walks which are self-avoiding and have attractive interactions; we exploit this equivalence, using a study...

Source: http://arxiv.org/abs/cond-mat/0210359v2

We consider network models for localisation problems belonging to symmetry class C. This symmetry class arises in a description of the dynamics of quasiparticles for disordered spin-singlet superconductors which have a Bogoliubov - de Gennes Hamiltonian that is invariant under spin rotations but not under time-reversal. Our models include but also generalise the one studied previously in the context of the spin quantum Hall effect. For these systems we express the disorder-averaged conductance...

Source: http://arxiv.org/abs/cond-mat/0201080v1